Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR5287)

Aquitaine Institute for Cognitive and Integrative Neuroscience



INCIA - UMR 5287- CNRS
Université de Bordeaux

Zone nord Bat 2 2ème étage
146, rue Léo Saignat
33076 Bordeaux cedex
France

Téléphone 05.57.57.15.51
Télécopie 05.56.90.14.21

Supervisory authorities

CNRS Ecole Pratique des Hautes Etudes Université de Bordeaux

Our partners

Neurocampus Unitéde Formation de Biologie

GDR

GDR Robotique GDR Mémoire GDR Multi-électrodes

Search




Home > Latest publications

Magali Cabanas, Fares Bassil, Nicole Mons, Maurice Garret , Yoon H. Cho September 21, 2017

by Loïc Grattier - published on

Changes in striatal activity and functional connectivity in a mouse model of Huntington’s disease

http://journals.plos.org/plosone/

Abstract

Hereditary Huntington’s disease (HD) is associated with progressive motor, cognitive and psychiatric symptoms. A primary consequence of the HD mutation is the preferential loss of medium spiny projection cells with relative sparing of local interneurons in the striatum. In addition, among GABAergic striatal projection cells, indirect pathway cells expressing D2 dopamine receptors are lost earlier than direct pathway cells expressing D1 receptors. To test in vivo the functional integrity of direct and indirect pathways as well as interneurons in the striatum of male R6/1 transgenic mice, we assessed their c-Fos expression levels induced by a striatal-dependent cognitive task and compared them with age-matched wild-type littermates. We found a significant increase of c-Fos+ nuclei in the dorsomedial striatum, and this only at 2 months, when our HD mouse model is still pre-motor symptomatic, the increase disappearing with symptom manifestation. Contrary to our expectation, the indirect pathway projection neurons did not undergo any severer changes of c-Fos expression regardless of age in R6/1 mice. We also found a decreased activation of interneurons that express parvalbumin in the dorsomedial striatum at both presymptomatic and symptomatic ages. Finally, analysis of c-Fos expression in extended brain regions involved in the cognitive learning used in our study, demonstrates, throughout ages studied, changes in the functional connectivity between regions in the transgenic mice. Further analysis of the cellular and molecular changes underlying the transient striatal hyperactivity in the HD mice may help to understand the mechanisms involved in the disease onset.

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0184580