Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR5287)

Aquitaine Institute for Cognitive and Integrative Neuroscience



INCIA - UMR 5287- CNRS
Université de Bordeaux

Zone nord Bat 2 2ème étage
146, rue Léo Saignat
33076 Bordeaux cedex
France

Téléphone 05.57.57.15.51
Télécopie 05.56.90.14.21

Supervisory authorities

CNRS Ecole Pratique des Hautes Etudes Université de Bordeaux

Our partners

Neurocampus Unitéde Formation de Biologie

GDR

GDR Robotique GDR Mémoire GDR Multi-électrodes

Search




Home > Latest publications

Sex differences in gene expression patterns associated with the APOE4 allele. Hsu M#1, Dedhia M#1, Crusio WE2, Delprato A1.

by Loïc Grattier - published on

Abstract
Background: The APOE gene encodes apolipoprotein ε (ApoE), a protein that associates with lipids to form lipoproteins that package and traffic cholesterol and lipids through the bloodstream. There are at least three different alleles of the APOE gene: APOE2, APOE3, and APOE4. The APOE4 allele increases an individual’s risk for developing late-onset Alzheimer disease (AD) in a dose-dependent manner. Sex differences have been reported for AD susceptibility, age of onset, and symptom progression, with females being more affected than males. Methods: In this study, we use a systems biology approach to examine gene expression patterns in the brains of aged female and male individuals who are positive for the APOE4 allele in order to identify possible sex-related differences that may be relevant to AD. Results: Based on correlation analysis, we identified a large number of genes with an expression pattern similar to that of APOE in APOE4-positive individuals. The number of these genes was much higher in APOE4-positive females than in APOE4-positive males, who in turn had more of such genes than APOE4-negative control groups. Our findings also indicate a significant sex* genotype interaction for the CNTNAP2 gene, a member of the neurexin family and a significant interaction for brain area*sex* genotype for PSEN2, a risk factor gene for AD. Conclusions: Profiling of these genes using Gene Ontology (GO) term classification, pathway enrichment, and differential expression analysis supports the idea of a transcriptional role of APOE with respect to sex differences and AD.

KEYWORDS:
APOE4; Alzheimer’s Disease; Systems Genetics

https://www.ncbi.nlm.nih.gov/pubmed/31448102