Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR5287)

Aquitaine Institute for Cognitive and Integrative Neuroscience

Université de Bordeaux

Zone nord Bat 2 2ème étage
146, rue Léo Saignat
33076 Bordeaux cedex


Supervisory authorities

CNRS Ecole Pratique des Hautes Etudes Université de Bordeaux

Our partners

Neurocampus Unitéde Formation de Biologie


GDR Robotique GDR Mémoire GDR Multi-électrodes


Home > Latest publications

Conservation of locomotion-induced oculomotor activity through evolution in mammals

by Loïc Grattier - published on

Filipa França de Barros 1 , Julien Bacqué-Cazenave 2 , Coralie Taillebuis 1,2 , Gilles Courtand 2 , Marin Manuel 1,3 , Hélène Bras 4, Michele Tagliabue 1 , Denis Combes 2 , François M Lambert 2* , Mathieu Beraneck 1*

Current Biology. 2021 Nov 23 ; S0960-9822(21)01546-3. doi: 10.1016/j.cub.2021.11.022. Online ahead of print.

1 Université de Paris, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France.
2 Institut des Neurosciences Cognitives et Intégratives d’Aquitaine, INCIA CNRS UMR 5287, 33076 Université de Bordeaux, Bordeaux, France.
3 Department of Biomedical and Pharmaceutical Sciences and George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, USA.
4 Institut de Neurosciences de la Timone, UMR 7289 CNRS-AMU, 13385 Marseille, France.
PMID: 34856124 DOI: 10.1016/j.cub.2021.11.022


Efference copies are neural replicas of motor outputs used to anticipate the sensory consequences of a self-generated motor action or to coordinate neural networks involved in distinct motor behaviors.1 An established example of this motor-to-motor coupling is the efference copy of the propulsive motor command, which supplements classical visuo-vestibular reflexes to ensure gaze stabilization during amphibian larval locomotion.2 Such feedforward replica of spinal pattern-generating circuits produces a spino-extraocular motor coupled activity that evokes eye movements, spatiotemporally coordinated to tail undulation independently of any sensory signal.3,4 Exploiting the developmental stages of the frog,1 studies in metamorphing Xenopus demonstrated the persistence of this spino-extraocular motor command in adults and its developmental adaptation to tetrapodal locomotion.5,6 Here, we demonstrate for the first time the existence of a comparable locomotor-to-ocular motor coupling in the mouse. In neonates, ex vivo nerve recordings of brainstem-spinal cord preparations reveal a spino-extraocular motor coupled activity similar to the one described in Xenopus. In adult mice, trans-synaptic rabies virus injections in lateral rectus eye muscle label cervical spinal cord neurons closely connected to abducens motor neurons. Finally, treadmill-elicited locomotion in decerebrated preparations7 evokes rhythmic eye movements in synchrony with the limb gait pattern. Overall, our data are evidence for the conservation of locomotor-induced eye movements in vertebrate lineages. Thus, in mammals as in amphibians, CPG-efference copy feedforward signals might interact with sensory feedback to ensure efficient gaze control during locomotion.